3 resultados para Higher Order Spectra, Heart Rate Variability, Cardiac State, Signal Analysis, Classification

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantity of blood arriving at the left side of the heart oscillates throughout the breathing cycle due to the mechanics of breathing. Neurally regulated fluctuations in the length of the heart period act to dampen oscillations of the left ventricular stroke volume entering the aorta. We have reported that stroke volume oscillations but not spectral frequency variability stroke volume measures can be used to estimate the breathing frequency. This study investigated with the same recordings whether heart period oscillations or spectral heart rate variability measures could function as estimators of breathing frequency. Continuous 270 s cardiovascular recordings were obtained from 22 healthy adult volunteers in the supine and upright postures. Breathing was recorded simultaneously. Breathing frequency and heart period oscillation frequency were calculated manually, while heart rate variability spectral maximums were obtained using heart rate variability software. These estimates were compared to the breathing frequency using the Bland–Altman agreement procedure. Estimates were required to be \±10% (95% levels of agreement). The 95% levels of agreement measures for the heart period oscillation frequency (supine: -27.7 to 52.0%, upright: -37.8 to 45.9%) and the heart rate variability spectral maximum estimates (supine: -48.7 to 26.5% and -56.4 to 62.7%, upright: -37.8 to 39.3%) exceeded 10%. Multiple heart period oscillations were observed to occur during breathing cycles. Both respiratory and non-respiratory sinus arrhythmia was observed amongst healthy adults. This observation at least partly explains why heart period parameters and heart rate variability parameters are not reliable estimators of breathing frequency. In determining the validity of spectral heart rate variability measurements we suggest that it is the position of the spectral peaks and not the breathing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the role of higher-order moments in portfolio choice within an expected-utility framework. We consider two-, three-, four- and five-parameter density functions for portfolio returns and derive exact conditions under which investors would all be optimally plungers rather than diversifiers. Through comparative statics we show the importance of higher-order risk preference properties, such as riskiness, prudence and temperance, in determining plunging behaviour. Empirical estimates for the S&P500 provide evidence for the optimality of diversification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the effects of higher-order risk attitudes and statistical moments on the optimal allocation of risky assets within the standard portfolio choice model. We derive the expressions for the optimal proportion of wealth invested in the risky asset to show they are functions of portfolio returns third- and fourth-order moments as well as on the investor’s risk preferences of prudence and temperance. We illustrate the relative importance that the introduction of those higher-order effects have in the decision of expected utility maximizers using data for the US.